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ABSTRACT
This paper proposes an approach that combines principal com-
ponent analysis with a Deep Back-Propagation Neural Network
model to solve high-latitude prediction problems. The approach is
applied to establish a product quality prediction model for gasoline
refinement. The simulation results have demonstrated effectiveness
of the approach.
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1 INTRODUCTION
The idea of creating a mathematical model of neural networks or
artificial neural networks was first put forward by neurophysiolo-
gist Warren Sturgis McCulloch and mathematician Walter Pitts in
1943 [1]. Since then, artificial neural networks have been applied in
many fields, and some amazing achievements have been developed
[2–4]. Many of the most exciting achievements [5, 6] in artificial in-
telligence research and applications were triggered in the late 1990s
when deep neural networks (DNN) were introduced, including the
AlphaGo network, which has since beaten many elite international
and professional human Go players, and multiple automatic driving
programs.
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Principal component analysis (PCA) allows the reduction of the
dimensionality of a data set while maintaining the characteristics
of the large variance contributions within that data set [6, 7]. It is
an extensively used data dimensionality reduction method that can
be applied to machine learning; it thus has extensive applications
in text processing, image recognition, natural language processing,
and similar fields [8]. This is useful, as it is not uncommon for
machine learning programs to otherwise be required to process
thousands or even hundreds of thousands of dimensions.
This article proposes combining PCA and DNN to reduce the dimen-
sionality of data in a specific use case so as to reduce resource con-
sumption and optimize the ensuingmachine learning. The approach
developed is then used to establish a product quality prediction
model for gasoline refinement.
The remainder of this paper is organized as follows: Section 2
introduces the theoretical algorithms used in the model, while in
Section 3, a set of comparative experiments illustrating how the
model can be applied to specific examples to verify its effectiveness
is presented. In the last section, the overall performance and future
development of the model are discussed.

2 METHODOLOGY
2.1 Principal Component Analysis (PCA)
Principal component analysis (PCA) is used to reduce the di-
mensionality of data sets. Specifically, given a set of n data
samples(x1,x2, . . . ,xn )T , where

xk = (xk1,xk2, . . . ,xkp ), fork = 1, 2, . . . ,n,
the dimensionality reduction process works as follows:
The sample data is first standardized by subtraction of the set mean
from each dimension of the data, which normalizes each data sam-
ple, converting the data sample set into the form

X =


X11 X12 · · · X1p
X21 X22 · · · X2p
...

...
...

Xn1 Xn2 · · · Xnp


= (X1,X2, · · ·,Xp )

where

Xi j =
xi j − X̄ j

δj
,

X̄ j=
1
n

∑n

k=1
xk j
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and

δ2
j =

√∑n
i=1 (xi j − X̄ j )

2

n − 1
,

for
i = 1, 2, . . . ,n; j = 1, 2, . . . ,p.

The covariance matrix of X can then be calculated as
<?TeX

Cov =


r11 r12 · · · r1p
r21 r22 · · · r2p
...

...
. . .

...

rp1 rp2 · · · rpp


?>
where

ri j =
1

n − 1

k=n∑
k=1

(Xki − Xi )(Xk j − X j ) =

k=n∑
k=1

XkiXk j

This allows the eigenvalues and corresponding eigenvectors of
the matrix to be calculated, assuming eigenvalues: ,
and the corresponding eigenvectors

a1 =


a11
a21
...

ap1


,a2 =


a12
a22
...

ap2


, ·s,ap =


a1p
a2p
...

app


The set V1,V2, ·sVt is selected to represent the principal eigenvec-
tors where t is the minimal number such that

∑t
i=1 λi∑p
i=1 λi

exceeds the

selected value, which is often in the region of 98%. This set of prin-
ciple eigenvectors constitutes the orthogonal basis of the ensuing
dimensionally reduced space.

2.2 Back-Propagation Neural Networks (BP
Neural Networks)

A BP neural network is a multi-layer feedforward neural network
that utilizes a back-propagation algorithm. The main idea underly-
ing BP networks is to divide the training process into two stages.
The first stage is a forward propagation process during which input
information is processed and calculated layer by layer for all hid-
den layers, with the actual output values being given in the output
layer. The second stage is the back-propagation process, during
which the difference between the actual output and the expected
output is calculated recursively for each layer, and the weights of
the connections are adjusted accordingly.
A structural diagram of a BP neural network is shown in Figure 1
The first layer is the input layer node, while the middle or hidden
layer is formed of one or more layers of nodes, and the last layer
consists of a given number of output layer nodes.When propagating
in the forward direction, information is processed from the input
layer through the hidden layer, and finally relayed to the output
layer. The state of each layer of neurons thus only affects the state
of the next layer of neurons. However, if the information does not
generate the desired output in the output layer, it then propagates
back, returning an error signal along the original path. By means of
such iteration, the weight value of each neuron connection can be

Figure 1: BP Neural Network.

gradually modified until the signal error reaches a preset expected
value.

3 EXPERIMENT
The octane number (expressed in RON) is the most important indi-
cator of combustion performance in gasoline samples. It is also used
as the commercial brand name of a given gasoline (for example, 89#,
92#, and 95#). In recent years, the desulfurization of FCC gasoline
and the application of olefin reduction processes have produced a
general reduction in the octane numbers of gasolines.
Sinopec Gaoqiao Petrochemical’s catalytic cracking gasoline refin-
ing and desulfurization unit has now been in operation for four
years, and it has generated a large database of information on gaso-
line properties. Data from this set for the period April 2017 to May
2020 was used in this experiment.
The experiment was based on original data from 325 samples, each
with seven raw material property variables, two spent adsorbent
property variables, two regenerated adsorbent property variables,
and 354 operating values, as collected from the refining unit. This
data was first preprocessed, then projected into a lower-dimensional
space as generated via a PCA algorithm. Finally, a BP neural net-
work was applied to establish product sulfur contents based on a
RON loss prediction model.

3.1 Data Pre-processing
In the original data, the variables showed normal distributions;
however, the data for each set of devices demonstrated problems at
certain points. For some variables, data was available for only part
of the period of interest, while other variables were entirely empty
of data or displayed other omissions. The raw data thus required
pre-processing, which was done by removing all outliers based on
applying a3σ criterion.
This 3σ criterion assumed that n data points were obtained in the
form x1,x2, · · ·,xn ,all with the same accuracy, with an arithmetic
mean x , residual errors vi = xi − x(i = 1, 2, · · ·,n), and a standard
deviationσ . Where the residual error vbof a measured valuexb (1 ≤

b ≤ n)meets the requirement|vb | = |xb − x | < 3σ , xb must contain
a bulky error value, which indicates that it is contaminated data
that therefore should be removed. The standard deviation,σ , was
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Table 1: Principal Component Information

Principal Component Eigenvalues Contribution Rate Cumulative Contribution Rate

F1 74.2117 0.3041 0.3041
F2 25.0809 0.1028 0.4069
F3 17.7093 0.0726 0.4795
F4 13.9378 0.0571 0.5366
F5 10.3694 0.0425 0.5791
F6 8.323 0.0341 0.6132
F7 7.0832 0.029 0.6423
F8 6.2133 0.0255 0.6677
F9 4.8397 0.0198 0.6876
F10 4.5751 0.0188 0.7063
F11 3.755 0.0154 0.7217
F12 3.5205 0.0144 0.7361
F13 3.423 0.014 0.7502
F14 3.0328 0.0124 0.7626
F15 2.9376 0.012 0.7746
F16 2.6499 0.0109 0.7855
F17 2.4383 0.01 0.7955
F18 2.3455 0.0096 0.8051
F19 2.2647 0.0093 0.8144
F20 1.9593 0.008 0.8224
F21 1.8541 0.0076 0.83
F22 1.6863 0.0069 0.8369
F23 1.6712 0.0068 0.8438
F24 1.5458 0.0063 0.8501
. . .. . . . . .. . . . . .. . . . . .. . .

calculated using the Bessel formula:

σ=

[
1

n − 1

n∑
i=1

v2
i

]1/2

3.2 PCA Model
A PCA model was applied to the data obtained after pre-processing,
which featured over 354 operation variables.
Using the PCA algorithm in MATLAB, the eigenvalues, contribu-
tion rates, and cumulative contribution rates of the corresponding
principal components were then obtained, as shown in Table 1
The firsttprincipal eigenvectors where the cumulated con-
tribution exceeded a certain value R% were selected. This
involved identifyingt , the minimal number meeting the
requirement

∑t
i=1 λi∑p
i=1 λi

≥ R% .

For this experiment, the value was set asR=85%. Accordingly, the
number of principal components t=24, as denoted by F1, F2, · · ·, F24,
with these principal components containing more than 85% of the
informationwithin the original data. Each of the original 325 sample
data points contained seven original attribute variables, two spent
adsorbent property variables, two regenerated adsorbent property
variables, and 354 operating variables. With the 24 eigenvectors
acting as an orthogonal basis for the required dimensionally reduced
space, the 354 operating variables sample can thus be represented
a vector of 24 dimensions.

3.3 BP Neural Network Model
The BP neural network model, available in the MATLAB neural
network toolbox, was then utilized for training and testing.
The input layer of the BP neural network model in this experiment
contained 24 main operating variables that representing the 354
operating variables, seven raw material property variables, two
spent adsorbent property variables, and two regenerated adsorbent
property variables.
Figure 2 shows that the number of nodes in the input layer was
thus 35. The sulfur content and octane number (RON) loss-related
data was set as the objectives, to represent product performance,
and the number of nodes in the output layer was set to two. The
model training time only took 10 seconds.
As shown in Figures 2-4, this experiment shows that a BP neural
network has the advantage of a strong nonlinear mapping ability
that can approximate any nonlinear continuous function with arbi-
trary precision. In addition, it has a high self-learning ability and
high adaptive ability, as well as several other advantages. How-
ever, the BP neural network algorithm also has some shortcomings,
such as slow convergence. As the BP neural network algorithm is
fundamentally a gradient descent, when the objective function is
too complicated, particularly when there are too many variables in
the objective function, a "sawtooth phenomenon" appears which
reduces the efficiency of the BP algorithm. This experiment thus
used the 24 main variables derived from the PCA model, rather
than the original 354 operating variables, as input layer nodes for
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Figure 2: BP Neural Network Training Diagram.

Figure 3: BP Neural Network Training Performance Graph.

the BP neural network prediction model, which greatly reduced the
complexity of the BP algorithm objective function, allowing the BP
algorithm to be more efficient.
As shown in Figures 5 , the BP neural network model error is
consistent with established standards, based on the results of this
experiment. Figure 6 shows that the main operating variables de-
rived from the PCA algorithm model can be sorted into new sample

Figure 4: BP Neural Network Training State Diagram.

Figure 5: BP Neural Network Training Regression.

data, and that the results obtained by using the BP neural network
prediction model on new sample data are satisfactory.

3.4 BP Neural Network Comparison
Experiment

The input layer of the BP neural network model in the comparison
experiment contained the 354 original manipulated variables, seven
raw material property variables, two spent adsorbent property
variables, and two regenerated adsorbent property variables.
Figure 7 shows that the number of input layer nodes in the BP neural
network comparison experiment was 365, and the number of nodes
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Figure 6: BP Neural Network Prediction Model Output
Graph.

Figure 7: BPNeuralNetworkComparisonExperimentTrain-
ing Diagram.

in the output layer was again set to two. Under the condition that
other model parameters remained unchanged, the model training
time was 15 minutes and 23 seconds. Replacing the original sample
data with dimensionality-reduced sample data as the input of the
BP neural network model can reduce the training time from 15
minutes to 10 seconds.
Through comparative experiments, it can be concluded that the
dimensionality of the data directly affected the complexity of the
resulting machine learning algorithm, and that the complexity of
the ensuing machine learning was exponentially related to the
dimensionality of the data.
In the example used in this experiment, the original sample data
only had 365 dimensions, which is relatively uncomplicated. Ma-
chine learning often encounters situations requiring the process-
ing of tens of thousands or even hundreds of thousands of high-
dimensional points of data. In such cases, resource consumption
in machine learning can be huge, and dimensionality reduction of
the data is thus necessary to reduce resource consumption while
retaining the bulk of the information.

4 CONCLUSION AND FUTUREWORK
The experiment showed that an approach that combines a PCA
algorithm and a BP neural network model can be highly effective
in solving high-latitude prediction problems. The PCA algorithm
can be used to effectively reduce the dimensionality of a data set
while maintaining the characteristics of large variance contribution
in that data set. In this experiment, as shown in Table 1, the PCA
algorithm model was successfully used to extract data from the 24
main variables that retained more than 85% of the information in
the original data from 354 operating variables, effectively reducing
the dimensionality of the sample data. The combination of the
PCA algorithm and the BP neural network thus greatly improved
the efficiency of the latter, reducing resource consumption during
machine learning.
In the future, this predictive model could be applied in various
fields to solve problems. In addition, it may be worth attempting
to establish an optimization model based on the prediction model.
Using the experiment discussed in this article as an example, this
could facilitate the establishment of an optimization model based on
prediction results that could identify the optimal operating variables
to allow a product to meet or exceed the standards required in the
process of gasoline refining at a lower cost.
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